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Abstract

In this paper we mirror the framework of generalized (non-)linear models to define the
family of generalized age-period-cohort stochastic mortality models which encompasses
the vast majority of stochastic mortality projection models proposed to date, including
the well-known Lee-Carter and Cairns-Blake-Dowd models. We also introduce the R pack-
age StMoMo which exploits the unifying framework of the generalized age-period-cohort
family to provide tools for fitting stochastic mortality models, assessing their goodness
of fit and performing mortality projections. We illustrate some of the capabilities of the
package by performing a comparison of several stochastic mortality models applied to the
England and Wales population.

Keywords: mortality modeling; mortality forecasting; age-period-cohort; generalized non-
linear models.

1. Introduction

During the last two centuries developed countries experienced a persistent increase in life
expectancy. For instance, Oeppen and Vaupel (2002) estimate that during the last 160 years
the world record in female life expectancy at birth has increased at an approximate steady
pace of 3 months per year. This increase in life expectancy, though a sign of social progress,
poses a challenge to governments, private pension plans and life insurers because of its im-
pact on pension and health costs. Actuaries and demographers have recognized the problems
caused by an aging population and rising longevity and have thus devoted significant attention
to the development of statistical techniques for the modeling and projection of mortality rates.

One of the most influential approaches to the stochastic modeling of mortality rates is the
parsimonious mortality model proposed by Lee and Carter (1992). This model uses principal
component analysis to decompose the age-time matrix of mortality rates into a bilinear com-
bination of age and period parameters, with the latter being treated as time series to produce
mortality projections. The Lee-Carter model has inspired numerous variants and extensions.
For instance, Lee and Miller (2001), Booth et al. (2002), and Brouhns et al. (2002) have
proposed alternative estimation approaches in order to improve the goodness-of-fit and the
forecasting properties of the model. In particular, Brouhns et al. (2002) propose a more formal
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statistical approach to estimating the parameters by embedding the Lee-Carter model into a
Poisson regression setting. Other authors have extended the Lee-Carter model by including
additional terms, such as multiple bilinear age-period components (Renshaw and Haberman
2003; Hyndman and Ullah 2007), or a cohort effect term (Renshaw and Haberman 2006).

The two factor Cairns-Blake-Dowd (CBD) model introduced by Cairns et al. (2006) is one
of the most prominent variants of the Lee-Carter model. The CBD model relies on the lin-
earity of the logit of one-year death probabilities at older ages. Specifically, it assumes that,
for a given, year the logit of the one-year death probability is a linear function of age, and
treats the intercept and slope parameters across years as stochastic processes. Cairns et al.
(2009) consider three extensions to the original CBD model by incorporating combinations
of a quadratic age term and a cohort effect term. Plat (2009) has combined features of the
CBD and the Lee-Carter models to produce a model that is suitable for full age ranges and
captures the cohort effect.

Given the abundance and rapid increase in the number of stochastic mortality models pro-
posed in the literature, there have been some recent attempts to find the commonalities among
these models. Hunt and Blake (2015) review the structure of mortality models and describe
an age-period-cohort model structure which encompasses the vast majority of stochastic mor-
tality models. Currie (2016) shows that many mortality models can be expressed in terms of
generalized linear models or generalized non-linear models.

In this paper, we build upon the works of Hunt and Blake (2015) and Currie (2016) to
define the family of generalized age-period-cohort stochastic mortality models by mirroring
the terminology of generalized linear models. We also introduce the R package StMoMo
(Villegas et al. 2017) which exploits the unifying framework of the generalized age-period-
cohort family combined with the powerful fitting function of the gnm package (Turner and
Firth 2015) to provide computational tools for implementing many of the stochastic mortality
models proposed to date.1 The StMoMo package is available at http://cran.r-project.
org/package=StMoMo. Version 0.4.0 has been used for this paper.

Several packages for mortality modeling are available in the R environment (R Core Team
2016). The package demography (Hyndman et al. 2014), whose usage is explained in detail
in Booth et al. (2014), implements, among other things, the original Lee-Carter model along
with the Lee and Miller (2001), Booth et al. (2002), and Hyndman and Ullah (2007) variants.
The ilc package (Butt et al. 2014) implements the Renshaw and Haberman (2006) cohort
extension of the Lee-Carter model together with the Lee-Carter model under a Poisson re-
gression framework. The LifeMetrics R functions implement the original CBD model and the
three extended CBD models considered in Cairns et al. (2009), along with the Lee-Carter
model (using Poisson maximum likelihood), the traditional age-period-cohort model (see, Os-
mond (1985)) and the Renshaw and Haberman (2006) model. This package, which is not on
CRAN, is available at http://www.macs.hw.ac.uk/~andrewc/lifemetrics/.

1The acronym StMoMo, pronounced Saint Momo, stands for Stochastic Mortality Modeling. Momo is the
king of Carnivals in numerous Latin American festivities (Wikipedia 2014).

http://cran.r-project.org/package=StMoMo
http://cran.r-project.org/package=StMoMo
http://www.macs.hw.ac.uk/~andrewc/lifemetrics/
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There are however several drawbacks of the existing packages which our package StMoMo
seeks to overcome. First, the existing packages are based on model-specific fitting algo-
rithms limiting the models available to those already predefined in the packages. By contrast,
StMoMo allows users to easily expand the number of models available. In addition, whilst
StMoMo provides forecasting and simulation functions for any model within the general-
ized age-period-cohort family, the existing packages only provide such functions for a limited
number of models. For instance, the package ilc only includes forecasting functions for the
Lee-Carter model. Similarly, simulation with the package LifeMetrics is limited to the Lee-
Carter and the standard CBD models. Finally, StMoMo provides functions which are not
available in existing packages, such as tools for analyzing the goodness-of-fit2 and evaluating
the impact of parameter uncertainty using bootstrapping techniques.

StMoMo comes with a set of functions for defining an abstract model — specifying for in-
stance the number of period terms, whether coefficients are parametric or not — and for
fitting a given model. This is particularly useful when estimating several models on a given
dataset or a given model to different datasets. The package also provides preset functions
for defining the most common models available in the mortality forecasting literature. In
addition, other models preferred by the user can be created in a very simple fashion, see
Section 4 where several examples are given. Therefore, the flexibility of the package allows
a user to quickly build up a battery of different models, and this is particularly useful when
seeking the most appropriate mortality model, comparing different models or assessing model
risk. StMoMo is particularly appealing for actuaries managing life and pensions portfolios
exposed to longevity risk. The code backing most functions implemented in the package has
been extensively used and tested for the development of multi-population mortality models
for assessing basis risk in longevity risk transactions, see Haberman et al. (2014).

In this paper we describe the statistical framework underlying StMoMo and illustrate its
usage. For this purpose, we use as a running example a comparison of several stochastic
mortality models fitted to the England and Wales population. This example is in the spirit
of the comparison exercises of Cairns et al. (2009, 2011), Haberman and Renshaw (2011) and
Lovász (2011), allowing us to show how several of the analysis performed in these papers can
easily be replicated using StMoMo. The structure of the paper is as follows. In Section 2 we
introduce our notation. In Section 3, we mirror the framework of generalized linear models to
define the family of generalized age-period-cohort (GAPC) stochastic mortality models and
demonstrate that many of the mortality models discussed in the literature can be framed
within this family. In Section 4 we explain how the GAPC family of models is implemented
in StMoMo. In Section 5, we describe the fitting of GAPC mortality models and illustrate
how this can be accomplished using StMoMo. In Section 6 we consider the evaluation of
the goodness-of-fit of GAPC models. In Section 7 we discuss the forecasting and simulation
of GAPC models using time series techniques. Section 8 describes the use of bootstrapping
techniques to incorporate parameter uncertainty in the estimation and forecasting of GAPC
mortality models. Finally, in Section 9 we provide some conclusions and discuss possible
extensions of the StMoMo package.

2We note that ilc also provides some graphical tools for assessing the goodness of fit of the models imple-
mented in that package.



4 StMoMo: An R Package for Stochastic Mortality Modeling

2. Notation and data
Let the random variable Dxt denote the number of deaths in a population at age x last
birthday during calendar year t. Also let dxt denote the observed number of deaths, Ec

xt the
central exposed to risk at age x in year t, and E0

xt the corresponding initial exposed to risk.
The one-year death probability for an individual aged x last birthday and in calendar year
t, denoted qxt, can be estimated as q̂xt = dxt

/
E0

xt . The force of mortality and central death
rates are denoted by µxt and mxt, respectively, with the empirical estimate of the latter being
m̂xt = dxt/Ec

xt . Under the assumption that the force of mortality is constant over each year
of age and calendar year, i.e., from age x to age x + 1 and year t to t + 1, then the force of
mortality µxt and the death rate mxt coincide. We assume that this is the case throughout.

In StMoMo and throughout this paper we assume that deaths, dxt, and either central expo-
sures, Ec

xt, or initial exposures, E0
xt, are available in a rectangular array format comprising

ages (on the rows) x = x1, x2, . . . , xk, and calendar years (on the columns) t = t1, t2, . . . , tn,
When only central exposures are available and initial exposures are required (or vice-versa),
one can approximate the initial exposures by adding half the matching reported numbers of
deaths to the central exposures, i.e, E0

xt ≈ Ec
xt + 1

2dxt. When the context is clear, we may
write Ext to refer to E0

xt or Ec
xt.

3. Generalized APC stochastic mortality models
Some authors have recently sought to identify the similarities among stochastic mortality
models. For instance, Hunt and Blake (2015) describe an age-period-cohort (APC) model
structure which encompasses the vast majority of stochastic mortality models. In another
interesting contribution, Currie (2016) shows that many common mortality models can be
expressed in the standard terminology of generalized linear or non-linear models. In this
section, we build upon the aforementioned papers to define the family of generalized age-
period-cohort (GAPC) stochastic mortality models.

Akin to generalized linear models (see, e.g., McCullagh and Nelder (1989)), a GAPC stochastic
mortality model is comprised of four components:

1. The random component: the numbers of deaths Dxt follow a Poisson distribution or a
Binomial distribution, so that

Dxt ∼ Poisson(Ec
xtµxt)

or
Dxt ∼ Binomial(E0

xt, qxt),
with E (Dxt/Ec

xt ) = µxt and E
(
Dxt

/
E0

xt

)
= qxt, respectively.

2. The systematic component: following Hunt and Blake (2015) the effects of age x, cal-
endar year t and year-of-birth (cohort) c = t − x are captured through a predictor ηxt

given by:

ηxt = αx +
N∑

i=1
β(i)

x κ
(i)
t + β(0)

x γt−x.
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Here:

• The term αx is a static age function capturing the general shape of mortality by
age.

• N ≥ 0 is an integer indicating the number of age-period terms describing the
mortality trends, with each time index κ

(i)
t , i = 1, . . . , N , contributing in specifying

the mortality trend and β
(i)
x modulating its effect across ages.

• The term γt−x accounts for the cohort effect with β
(0)
x modulating its effect across

ages.

The age modulating terms β
(i)
x , i = 0, 1, . . . , N , can be either pre-specified functions of

age, i.e., β
(i)
x ≡ f i(x), as in CBD type models, or non-parametric terms without any

prior structure which need to be estimated as in the Lee-Carter model. In the GAPC
family we assume that the period indexes κ

(i)
t , i = 1, . . . , N , and the cohort index γt−x

are stochastic processes. This is the key feature that allows the stochastic projection
of GAPC models and thus the generation of probabilistic forecasts of future mortality
rates.

3. The link function g associating the random component and the systematic component
so that

g

(
E
(

Dxt

Ext

))
= ηxt.

Although a number of link functions would be possible, it is convenient to use the so-
called canonical link and pair the Poisson distribution with the log link function and
the Binomial distribution with the logit link function (see, e.g., Currie (2016) for a dis-
cussion of this in the context of mortality models and McCullagh and Nelder (1989) in
the wider context of GLMs).

4. The set of parameter constraints: most stochastic mortality models are only identifiable
up to a transformation and thus require parameter constraints to ensure unique param-
eter estimates. These parameter constraints are applied through a constraint function
v which maps an arbitrary vector of parameters

θ :=
(
αx, β(1)

x , ..., β(N)
x , κ

(1)
t , ..., κ

(N)
t , β(0)

x , γt−x

)
into a vector of transformed parameters

v(θ) = θ̃ =
(
α̃x, β̃(1)

x , ..., β̃(N)
x , κ̃

(1)
t , ..., κ̃

(N)
t , β̃(0)

x , γ̃t−x

)
satisfying the model constraints with no effect on the predictor ηxt (i.e., θ and θ̃ result

in the same ηxt).

Most stochastic mortality models proposed in the literature belong to the GAPC family.
This includes the original Lee-Carter model, the extensions of the Lee-Carter proposed in
Renshaw and Haberman (2003, 2006), the original CBD model, and the extended CBD mod-
els of Cairns et al. (2009). In addition, all the model structures considered in Haberman and
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Renshaw (2011), Lovász (2011) and van Berkum et al. (2014), as well as the models of Plat
(2009), Aro and Pennanen (2011), O’Hare and Li (2012), Börger et al. (2013) and Alai and
Sherris (2014), are part of the GAPC class of models.3

Next, we describe in detail some of these models highlighting how they can be framed within
the GAPC family.

3.1. Lee-Carter model under a Poisson setting
Brouhns et al. (2002) have implemented the Lee-Carter model assuming a Poisson distribution
of the number of deaths and using the log link function with respect to the force of mortality
µxt. The predictor structure proposed by Lee and Carter (1992) assumes that there is a static
age function, αx, a unique non-parametric age-period term (N = 1), and no cohort effect.
Thus, the predictor is given by:

ηxt = αx + β(1)
x κ

(1)
t (1)

In order to project mortality, the time index κ
(1)
t is modeled and forecasted using ARIMA

processes. Typically, a random walk with drift has been shown to provide a reasonable fit,
that is,

κ
(1)
t = δ + κ

(1)
t−1 + ξt, ξt ∼ N(0, σ2

κ) i.i.d.,
where δ is the drift parameter and ξt is a Gaussian white noise process with variance σ2

κ.

The Lee-Carter model is only identifiable up to a transformation, as for arbitrary real con-
stants c1 and c2 ̸= 0 the parameters in Equation 1 can be transformed in the following way(

αx, β(1)
x , κ

(1)
t

)
→
(

αx + c1β(1)
x ,

1
c2

β(1)
x , c2(κ(1)

t − c1)
)

, (2)

leaving ηxt unchanged. To ensure identifiability of the model, Lee and Carter (1992) suggest
the following set of parameter constraints∑

x

β(1)
x = 1,

∑
t

κ
(1)
t = 0, (3)

which can be imposed by choosing

c1 = 1
n

∑
t

κ
(1)
t , c2 =

∑
x

β(1)
x (4)

in transformation (2).

3.2. Renshaw and Haberman model: Lee-Carter with cohort effects
Renshaw and Haberman (2006) generalize the Lee-Carter model by incorporating a cohort
effect to obtain the predictor:

ηxt = αx + β(1)
x κ

(1)
t + β(0)

x γt−x (5)
3We note however that models which rely on the smoothness of mortality over both age and time, such as

the graduation approach of Renshaw et al. (1996) and the P-Spline model of Currie et al. (2006), do not belong
to the GAPC family. The P-Spline approach is implemented in the MortalitySmooth R package (Camarda
2012).
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Mortality projections for this model are derived using time series forecast of the estimated
κ

(1)
t and γt−x, generated using univariate ARIMA processes under the assumption of inde-

pendence between the period and the cohort effects.

In order to estimate the model, Renshaw and Haberman (2006) assume a Poisson distribution
of deaths (random component) and use a log link function targeting the force of mortality
µxt. As with the Lee-Carter model, the predictor ηxt is invariant to the transformation:

(
αx, β(1)

x , κ
(1)
t , β(0)

x , γt−x

)
→
(

αx + c1β(1)
x + c2β(0)

x ,
1
c3

β(1)
x ,

c3(κ(1)
t − c1), 1

c4
β(0)

x , c4(γt−x − c2)
)

, (6)

where c1, c2, c3 ̸= 0 and c4 ̸= 0 are real constants. Identifiability of the model can be ensured
using the following set of parameter constraints:

∑
x

β(1)
x = 1,

∑
t

κ
(1)
t = 0,

∑
x

β(0)
x = 1,

tn−x1∑
c=t1−xk

γc = 0,

which can be imposed by setting

c1 = 1
n

∑
t

κ
(1)
t , c2 = 1

n + k − 1

tn−x1∑
c=t1−xk

γc, c3 =
∑

x

β(1)
x , c4 =

∑
x

β(0)
x ,

in transformation (6).

Renshaw and Haberman (2006) also consider several substructures of the predictor (5) ob-
tained by setting to a constant one or both of the age modulating terms. Of particular interest
is the substructure obtained by setting β

(0)
x = 1,

ηxt = αx + β(1)
x κ

(1)
t + γt−x, (7)

which has been suggested by Haberman and Renshaw (2011) as a simpler structure that
resolves some stability issues of the original model.

3.3. APC model

Another commonly used substructure of the Renshaw and Haberman model is the so-called
age-period-cohort (APC) model, corresponding to β

(1)
x = 1, β

(0)
x = 1,

ηxt = αx + κ
(1)
t + γt−x,

which has a long-standing tradition in the fields of medicine and demography (see, e.g.,
Clayton and Schifflers (1987), Hobcraft et al. (1982) and Osmond (1985)), but has not been
widely used in the actuarial literature until it was considered by Currie (2006). The APC
model is known to be invariant with respect to the following two transformations:
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(
αx, κ

(1)
t , γt−x

)
→
(
αx + ϕ1 − ϕ2x, κ

(1)
t + ϕ2t, γt−x − ϕ1 − ϕ2(t − x)

)
(8)(

αx, κ
(1)
t , γt−x

)
→
(
αx + c1, κ

(1)
t − c1, γt−x

)
, (9)

where c1, ϕ1, and ϕ2 are real constants. However, we can ensure identifiability of the model
by imposing the set of constraints:

∑
t

κ
(1)
t = 0,

tn−x1∑
c=t1−xk

γc = 0,
tn−x1∑

c=t1−xk

cγc = 0,

where the last two constraints imply that the cohort effect fluctuates around zero with no dis-
cernible linear trend. Following Haberman and Renshaw (2011, Appendix A), the constraints
on the cohort effect can be imposed by applying transformation (8) with constants ϕ1 and ϕ2
obtained by regressing γt−x on t − x, so that

γt−x = ϕ1 + ϕ2(t − x) + ϵt−x, ϵt−x ∼ N(0, σ2) i.i.d..

The constraint on the period index can then be imposed by applying transformation (9) with

c1 = 1
n

∑
t

κ
(1)
t .

3.4. CBD model

Cairns et al. (2006) propose a predictor structure with two age-period terms (N = 2) with
pre-specified age-modulating parameters β

(1)
x = 1 and β

(2)
x = x − x̄, no static age function

and no cohort effect. Thus, the predictor of the CBD model is given by:

ηxt = κ
(1)
t + (x − x̄)κ(2)

t ,

where x̄ is the average age in the data. Cairns et al. (2006) obtain mortality forecasts by
projecting the period effects κ

(1)
t and κ

(2)
t using a bivariate random walk with drift.

The CBD model does not have identifiability issues and hence the set of parameter constraints
is empty. In order to estimate the parameter of the CBD model we can follow Haberman
and Renshaw (2011) and assume a Binomial distribution of deaths using a logit link function
targeting the one-year death probabilities qxt.
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3.5. M7: Quadratic CBD model with cohort effects

Cairns et al. (2009) extend the original CBD model by adding a cohort effect and a quadratic
age effect to obtain the predictor:

ηxt = κ
(1)
t + (x − x̄)κ(2)

t +
(
(x − x̄)2 − σ̂2

x

)
κ

(3)
t + γt−x, (10)

where σ̂2
x is the average value of (x − x̄)2. This model, usually referred to as model M7, is

not identifiable as the transformation(
κ

(1)
t , κ

(2)
t , κ

(3)
t , γt−x

)
→
(

κ
(1)
t + ϕ1 + ϕ2(t − x̄) + ϕ3

(
(t − x̄)2 + σ̂2

x

)
, κ

(2)
t − ϕ2 − 2ϕ3(t − x̄),

κ
(3)
t + ϕ3, γt−x − ϕ1 − ϕ2(t − x) − ϕ3(t − x)2

)
, (11)

for real constants ϕ1, ϕ2 and ϕ3, leaves the predictor unchanged. To identify the model Cairns
et al. (2009) impose the set of constraints:

tn−x1∑
c=t1−xk

γc = 0,
tn−x1∑

c=t1−xk

cγc = 0,
tn−x1∑

c=t1−xk

c2γc = 0,

which ensure that the cohort effect fluctuates around zero and has no discernible linear or
quadratic trend. Following Haberman and Renshaw (2011, Appendix A), these constraints
can be imposed by applying transformation (11) with constants ϕ1, ϕ2 and ϕ3 obtained by
regressing γt−x on t − x and (t − x)2, so that

γt−x = ϕ1 + ϕ2(t − x) + ϕ3(t − x)2 + ϵt−x, ϵt−x ∼ N(0, σ2) i.i.d..

Cairns et al. (2009) also consider the simpler predictor structures

ηxt = κ
(1)
t + (x − x̄)κ(2)

t + γt−x,

ηxt = κ
(1)
t + (x − x̄)κ(2)

t + (xc − x)γt−x,

where xc is a constant parameter to be estimated. These structures are typically referred to
as models M6 and M8, respectively.

3.6. Plat model

Plat (2009) combines the CBD model with some features of the Lee-Carter model to produce
a model that is suitable for full age ranges and captures the cohort effect. The proposed
predictor structure assumes that there is a static age function, αx, three age-period terms
(N = 3) with pre-specified age-modulating parameters β

(1)
x = 1, β

(2)
x = x̄ − x, β

(3)
x = (x̄ −

x)+ = max(0, x̄−x), and a cohort effect with pre-specified age-modulating parameters β
(0)
x =

1. Thus, the predictor is given by:

ηxt = αx + κ
(1)
t + (x̄ − x)κ(2)

t + (x̄ − x)+κ
(3)
t + γt−x. (12)

Plat (2009) targets the force of mortality µxt with the log link and estimates the parameters
of the model by assuming a Poisson distribution of the deaths. The following parameter
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transformations leave the predictor in (12) unchanged:(
αx, κ

(1)
t , κ

(2)
t , κ

(3)
t , γt−x

)
→
(
αx + ϕ1 − ϕ2x + ϕ3x2, κ

(1)
t + ϕ2t + ϕ3(t2 − 2x̄t),

κ
(2)
t + 2ϕ3t, κ

(3)
t , γt−x − ϕ1 − ϕ2(t − x) − ϕ3(t − x)2

)
(13)(

αx, κ
(1)
t , κ

(2)
t , κ

(3)
t , γt−x

)
→
(
αx + c1 + c2(x̄ − x) + c3(x̄ − x)+,

κ
(1)
t − c1, κ

(2)
t − c2, κ

(3)
t − c3, γt−x

)
, (14)

where c1, c2, c3, ϕ1, ϕ2, and ϕ3 are any real constants. The following set of parameter
constraints can be imposed to ensure identifiability:

∑
t

κ
(1)
t = 0,

∑
t

κ
(2)
t = 0,

∑
t

κ
(3)
t = 0,

tn−x1∑
c=t1−xk

γc = 0,
tn−x1∑

c=t1−xk

cγc = 0,
tn−x1∑

c=t1−xk

c2γc = 0 (15)

The first three constraints ensure that the period indexes are centered around zero, while the
last three constraints ensure that the cohort effect fluctuates around zero and has no linear
or quadratic trend. Following Haberman and Renshaw (2011, Appendix A), the constraints
on the cohort effect can be imposed by applying transformation (13) with constants ϕ1, ϕ2,
and ϕ3 obtained by regressing γt−x on t − x and (t − x)2, so that

γt−x = ϕ1 + ϕ2(t − x) + ϕ3(t − x)2 + ϵt−x, ϵt−x ∼ N(0, σ2) i.i.d.. (16)

The constraints on the period indexes can then be imposed by applying transformation (14)
with

ci = 1
n

∑
t

κ
(i)
t , i = 1, 2, 3. (17)

In the cases where only older ages are of interest, Plat (2009) suggests to drop the third period
term from predictor (12):4

ηxt = αx + κ
(1)
t + (x̄ − x)κ(2)

t + γt−x. (18)

We note that this reduced Plat model has the same identifiability issues as the complete
model with the omission of the transformations and constraints involving κ

(3)
t and c3.

4Note that the reduced Plat model is essentially the M6 model of Cairns et al. (2009) with an added static
age term αx.
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4. GAPC stochastic mortality models with StMoMo
The StMoMo package provides an R implementation of the GAPC family of stochastic mor-
tality models using the standard S3 object-oriented system. StMoMo can be installed with
the code:

R> install.packages("StMoMo")

The package is loaded within R as follows:

R> library("StMoMo")

In the package StMoMo, GAPC stochastic mortality models are constructed using the StMoMo
function. The synopsis of this functions is:

StMoMo(link = c("log", "logit"), staticAgeFun = TRUE, periodAgeFun = "NP",
cohortAgeFun = NULL, constFun = function(ax, bx, kt, b0x, gc, wxt, ages)
list(ax = ax, bx = bx, kt = kt, b0x = b0x, gc = gc))

The StMoMo function takes as input information on the link function (and the associated
distributional assumption), the predictor structure, and the set of parameter constraints to
create an object of the type "StMoMo" representing a GAPC mortality model:

• The argument link defines the link function and the random component associated
with the mortality model. Setting link = "log" assumes that deaths follow a Poisson
distribution and uses a log link targeting the force of mortality µxt, while setting link
= "logit" assumes that deaths follow a Binomial distribution and uses a logit link
targeting one-year death probabilities qxt.

• The predictor of the model is defined via the arguments staticAgeFun, periodAgeFun
and cohortAgeFun. Argument staticAgeFun is a logical variable indicating whether
the model has a static age function αx or not. Argument periodAgeFun is a list of length
N containing the definitions of the period age-modulating parameters β

(i)
x , i = 1, . . . , N ,

with each entry being either "NP" for non-parametric age terms, "1" for β
(i)
x = 1, or

a predefined parametric function of age.5 Argument cohortAgeFun defines the cohort
age modulating parameter β

(0)
x and can take values "NP" for non-parametric age terms,

"1" for β
(0)
x = 1, a predefined parametric function of age, or NULL if the model does not

have a cohort effect.

• The set of parameter constraints are defined via the argument constFun which is a
user-defined implementation of the constraint function v mapping an arbitrary vector
of parameters to a vector of transformed parameters satisfying the model constraints.

We note that due to limitations of the R functions used for fitting "StMoMo" objects to data
(see Section 5), the current version of StMoMo does not support models combining paramet-
ric and non-parametric age-modulating functions, β

(i)
x , 0 = 1, . . . , N . However, such models

5Note that we can define a model with no age-period terms (N = 0) by making periodAgeFun = NULL.
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Model Predictor

LC ηxt = αx + β
(1)
x κ

(1)
t

CBD ηxt = κ
(1)
t + (x − x̄)κ(2)

t

APC ηxt = αx + κ
(1)
t + γt−x

RH ηxt = αx + β
(1)
x κ

(1)
t + γt−x

M7 ηxt = κ
(1)
t + (x − x̄)κ(2)

t +
(
(x − x̄)2 − σ̂2

x

)
κ

(3)
t + γt−x

PLAT ηxt = αx + κ
(1)
t + (x̄ − x)κ(2)

t + γt−x

Table 1: Model structures considered in this paper.

are not typically considered and the majority of models proposed in the literature are either
extensions of the Lee-Carter model with all age-modulating terms being non-parametric or
extensions of the CBD model with all age-modulating terms being parametric.6

In order to illustrate the creation of particular GAPC mortality models and other capabilities
of StMoMo, in the rest of this paper we will focus on the models summarized in Table 1.
From now on, LC stands for the Lee-Carter model; CBD for the original Cairns-Blake-Dowd
model; APC for the age-period-cohort model; RH for the cohort extension of the Lee-Carter
model defined in Equation 7 and proposed by Renshaw and Haberman (2006); M7 for the
quadratic CBD model defined in Equation 10; and PLAT for the reduced Plat model defined
previously in Equation 18. For the sake of comparability, in all cases we will assume a Bino-
mial distribution of deaths and use the logit function to link qxt to the predictor structure ηxt.

Below, we show how to define each of the models in Table 1 using the package StMoMo.

Lee-Carter model

The LC model under a Binomial setting can be defined using the following code:

R> constLC <- function(ax, bx, kt, b0x, gc, wxt, ages){
+ c1 <- mean(kt[1, ], na.rm = TRUE)
+ c2 <- sum(bx[, 1], na.rm = TRUE)
+ list(ax = ax + c1 * bx, bx = bx / c2, kt = c2 * (kt - c1))
+ }
R> LC <- StMoMo(link = "logit", staticAgeFun = TRUE, periodAgeFun = "NP",
+ constFun = constLC)

Recalling Section 3.1, we note that the constraint function constLC is the R implementation
of transformation (2) with constants c1 and c2 calculated using Equation 4 to impose the
constraints defined in Equation 3. The StMoMo package also contains the function lc to

6For instance, a model with predictor structure ηxt = αx + (x − x̄)κ(1)
t + β

(2)
x κ

(1)
t , correspond-

ing to StMoMo(staticAgeFun = TRUE, periodAgeFun = c(f1, "NP")), with f1 <- function(x, ages) x -
mean(ages), is not supported.
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facilitate the definition of Lee-Carter models. Hence, we could define the LC model using the
much simpler predefined command:

R> LC <- lc(link = "logit")

CBD model

To define the CBD model we use the following commands:

R> f2 <- function(x, ages) x - mean(ages)
R> CBD <- StMoMo(link = "logit", staticAgeFun = FALSE,
+ periodAgeFun = c("1", f2))

Here, we note that function f2 defines the second age-modulating parameter β
(2)
x = x− x̄ and

that a constFUN argument need not be provided since the CBD model does not have iden-
tifiability issues. Alternatively, we can define the CBD model using the predefined function
cbd:

R> CBD <- cbd()

APC model, RH model and M7 model

The APC, RH and M7 models could be defined by implementing explicitly the discussions in
Sections 3.2, 3.3 and 3.5. However, StMoMo includes predefined functions apc, rh, m7 that
facilitate the definition of the APC model, the RH model and model M7, respectively.7 Thus,
these models are defined with the code:

R> RH <- rh(link = "logit", cohortAgeFun = "1")
R> APC <- apc(link = "logit")
R> M7 <- m7()

PLAT model

The package StMoMo does not include a predefined function for the Plat model. Nevertheless,
recalling Section 3.6, we can define the reduced Plat model using the code:

R> f2 <- function(x, ages) mean(ages) - x
R> constPlat <- function(ax, bx, kt, b0x, gc, wxt, ages){
+ nYears <- dim(wxt)[2]
+ x <- ages
+ t <- 1:nYears
+ c <- (1 - tail(ages, 1)):(nYears - ages[1])
+ xbar <- mean(x)
+ phiReg <- lm(gc ~ 1 + c + I(c ^ 2), na.action = na.omit)

7The StMoMo package also includes functions m6 and m8 for defining models M6 and M8. We also note that
the Renshaw and Haberman (2006) cohort extension of the Lee-Carter in Equation 5 can be defined using the
function rh with argument cohortAgeFun = "NP".
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+ phi <- coef(phiReg)
+ gc <- gc - phi[1] - phi[2] * c - phi[3] * c ^ 2
+ kt[2, ] <- kt[2, ] + 2 * phi[3] * t
+ kt[1, ] <- kt[1, ] + phi[2] * t + phi[3] * (t ^ 2 - 2 * xbar * t)
+ ax <- ax + phi[1] - phi[2] * x + phi[3] * x ^ 2
+ ci <- rowMeans(kt, na.rm = TRUE)
+ ax <- ax + ci[1] + ci[2] * (xbar - x)
+ kt[1, ] <- kt[1, ] - ci[1]
+ kt[2, ] <- kt[2, ] - ci[2]
+ list(ax = ax, bx = bx, kt = kt, b0x = b0x, gc = gc)
+ }
R> PLAT <- StMoMo(link = "logit", staticAgeFun = TRUE,
+ periodAgeFun = c("1", f2), cohortAgeFun = "1", constFun = constPlat)

We note that the constraint function constPlat is the R implementation of transformations
(13) and (14) omitting the terms involving κ(3) and c3, and with constants ϕ1, ϕ2, ϕ3 obtained
via the linear regression defined in (16) and constants c1 and c2 as in Equation 17. Function
constPlat imposes the constraints in Equation 15.

5. Model fitting
Parameter estimates of GAPC stochastic mortality models can be obtained by maximizing
the model log-likelihood, which is given by

L(dxt, d̂xt) =
∑

x

∑
t

ωxt

{
dxt log d̂xt − d̂xt − log dxt!

}
in the case of a Poisson distribution of deaths, and by

L(dxt, d̂xt) =
∑

x

∑
t

ωxt

{
dxt log

(
d̂xt

E0
xt

)
+ (E0

xt − dxt) log
(

E0
xt − d̂xt

E0
xt

)
+ log

(
E0

xt

dxt

)}

in the case of a Binomial distribution of deaths. In both cases, ωxt are weights taking the
value 0 if a particular (x, t) data cell is omitted or 1 if the cell is included, and

d̂xt = Ext g−1
(

αx +
N∑

i=1
β(i)

x κ
(i)
t + β(0)

x γt−x

)

is the expected number of deaths predicted by the model, with g−1 denoting the inverse of
the link function g.

In the mortality literature, maximization of the log-likelihood is typically performed using the
Newton-Raphson iterative procedure tailored for each model (see, e.g., Brouhns et al. (2002),
Renshaw and Haberman (2006) and Cairns et al. (2009)). This is in fact the approach imple-
mented in the packages ilc and LifeMetrics. Nonetheless, as discussed extensively by Currie
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(2016), many stochastic mortality models are examples of generalized linear models or gen-
eralized non-linear model, which facilitates their fitting using standard statistical software.8
Currie (2016) exemplifies this fact by fitting several stochastic mortality models in R using
the standard function glm or the function gnm of the package gnm (Turner and Firth 2015).9

StMoMo provides the generic function fit for estimating the parameters of GAPC mortality
models. In line with the remarks of Currie (2016), the corresponding S3 method for objects
of the class "StMoMo" heavily relies on the function gnm of the package gnm to estimate the
parameters of a GAPC model.Internally, this is accomplished by constructing the equivalent
gnm formulation of the GAPC mortality model.10 For instance, the gnm formula of the
Binomial LC model created before is

R> LC$gnmFormula

[1] "D/E ~ -1 + offset(o) + factor(x) + Mult(factor(x), factor(t), inst = 1)"

while the gnm formula of the Binomial CBD model defined before is

R> CBD$gnmFormula

[1] "D/E ~ -1 + offset(o) + factor(t) + B2:factor(t)"

We now illustrate the usage of the function fit of the package StMoMo by fitting the six
models defined before to England and Wales mortality data. Function fit expects the user
to provide a list of class "StMoMoData" containing deaths and exposures in a matrix format
with ages on the rows and calendar years on the columns. Such a type of list can read-
ily be created using the StMoMoData function as exemplified in Section 8. For illustration
purposes, the object EWMaleData, included in the package StMoMo, contains deaths counts
(EWMaleData$Dxt) and central exposures (EWMaleData$Ext) for England and Wales males
for the period 1961-2011 and for ages 0-100 obtained from the Human Mortality Database
(2014).

R> EWMaleData

Mortality data for England and Wales
Series: male
Years: 1961 - 2011
Ages: 0 - 100
Exposure: central

However, in our examples we concentrate on ages 55 to 89 as the CBD model and the M7
model have been particularly designed to fit higher ages. Additionally, since some models

8Haberman and Renshaw (2011) have also noticed this fact and profit from GLM facilities in standard
statistical packages when fitting CBD type models.

9Debón et al. (2010) also discuss the use of the package gnm for fitting Lee-Carter type models.
10We note that when all the β

(i)
x are parametric functions of age, the model is a GLM and therefore gnm by

default resorts to the glm function of R when fitting the parameters of the model.
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include cohort effects and in agreement with the usual practice (see e.g Cairns et al. (2009)
and Haberman and Renshaw (2011)), we exclude (by setting ωxt = 0) all cohorts that have
fewer than three observations. Missing values for either death counts or exposures are auto-
matically zero-weighted.

Models LC, APC, CBD, M7 and PLAT can be fitted to England and Wales male mortality
data for ages 55 to 89 using the code:

R> EWMaleIniData <- central2initial(EWMaleData)
R> ages.fit <- 55:89
R> wxt <- genWeightMat(ages = ages.fit, years = EWMaleIniData$years,
+ clip = 3)
R> LCfit <- fit(LC, data = EWMaleIniData, ages.fit = ages.fit, wxt = wxt)
R> APCfit <- fit(APC, data = EWMaleIniData, ages.fit = ages.fit, wxt = wxt)
R> CBDfit <- fit(CBD, data = EWMaleIniData, ages.fit = ages.fit, wxt = wxt)
R> M7fit <- fit(M7, data = EWMaleIniData, ages.fit = ages.fit, wxt = wxt)
R> PLATfit <- fit(PLAT, data = EWMaleIniData, ages.fit = ages.fit, wxt = wxt)

From this code we note the following:

• In order to match the logit-Binomial setting used before in the definition of the mor-
tality models, initial exposures are approximated by transforming the available central
exposures. This is accomplished using the utility function central2initial of package
StMoMo.

• The first and last three cohorts years are excluded from the fitting via the argument
wxt. The appropriate 0-1 weighting matrix, wxt, is constructed using the utility function
genWeightMat of package StMoMo.

The fitting of the RH model requires some care as it is well known that fitting cohort extensions
of the Lee-Carter models is problematic (Hunt and Villegas 2015). In particular, Currie
(2016) has encountered convergence issues when using package gnm to fit the RH model.
As a possible way to circumvent these issues, Currie (2016) suggests the use of appropriate
starting values when fitting model RH. This can be achieved in the function fit via input
arguments start.ax, start.bx, start.kt, start.b0x, and start.gc. Using the parameters
of the Lee-Carter model as starting values, model RH can be fitted with the code:11

R> RHfit <- fit(RH, data = EWMaleIniData, ages.fit = ages.fit, wxt = wxt,
+ start.ax = LCfit$ax, start.bx = LCfit$bx, start.kt = LCfit$kt)

The output from the function fit is an object of the class "fitStMoMo" including, among
other things, the following information:

• model: the "StMoMo" object defining the underlying GAPC stochastic mortality model;
11StMoMo also implements the fitting method suggested by Hunt and Villegas (2015) to solve the convergence

issues of the RH model. This can be acomplished by setting argument approxConst = TRUE when defining the
RH model, that is, rh(approxConst=TRUE).
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Figure 1: Parameters for the Lee-Carter (LC) model fitted to the England and Wales male
population for ages 55-89 and the period 1961-2011.

• ax, bx, kt, b0x, gc: the estimated parameters;

• loglik: the log-likelihood of the model;

• deviance: the model deviance;

• nobs: the number of observations in the data;

• npar: the effective number of parameters of the model;

• fittingModel: the output of the gnm call used to fit the model.

There are print, plot, fitted, and residuals methods for the "fitStMoMo" class. For
instance, Figures 1, 2 and 3 depicting the fitted parameters of the LC model, the CBD model
and the APC model, respectively, were produced with the code:

R> plot(LCfit, nCol = 3)
R> plot(CBDfit, parametricbx = FALSE)
R> plot(APCfit, parametricbx = FALSE, nCol = 3)

6. Goodness-of-fit analysis
The goodness-of-fit of mortality models is typically analyzed by inspecting the residuals of the
fitted model. Regular patterns in the residuals indicate the inability of the model to describe
all the features of the data appropriately. With a Poisson or Binomial random component, it
is appropriate to look at the scaled deviance residuals defined as:

rxt = sign(dxt − d̂xt)
√

dev(x, t)
ϕ̂

, ϕ̂ = D(dxt, d̂xt)
K − ν

,

where
dev(x, t) = 2

[
dxt log

(
dxt

d̂xt

)
− (dxt − d̂xt)

]
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Figure 2: Parameters for the CBD model fitted to the England and Wales male population
for ages 55-89 and the period 1961-2011.
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Figure 3: Parameters for the APC model fitted to the England and Wales male population
for ages 55-89 and the period 1961-2011.

for a Poisson random component, or

dev(x, t) = 2
[
dxt log

(
dxt

d̂xt

)
+ (E0

xt − dxt) log
(

E0
xt − dxt

E0
xt − d̂xt

)]

for a Binomial random component. Further,

D(dxt, d̂xt) =
∑

x

∑
t

ωxtdev(x, t)

is the total deviance of the model, K = ∑
x

∑
t ωxt is the number of observations in the data

and ν is the effective number of parameters in the model.

In StMoMo standardized deviance residuals can be obtained with the generic function residuals
applied to a fitted stochastic mortality model of the class "fitStMoMo". For example, to ob-
tain the residuals of the LC model and of the CBD model fitted before we use the commands:
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R> LCres <- residuals(LCfit)
R> CBDres <- residuals(CBDfit)

Graphs of these residuals can be produced using the generic function plot. This function
supports, via the argument type, three types of plots:

• scatter plots of residuals by age, period and cohort such as those extensively used in
Haberman and Renshaw (2011);

• black and white sign-plots of the residuals such as those used in Cairns et al. (2009)
and Lovász (2011); and

• color maps (heat-maps) of the residuals.

Figure 4 presents heat-maps of the deviance residuals for the six models fitted to the England
and Wales male mortality experience. These charts were produced using function plot with
option type = "colourmap". For instance, Figure 4a was obtained with the code:

R> plot(LCres, type = "colourmap", reslim = c(-3.5, 3.5))

From Figure 4 we see that models LC, CBD and APC display strong residual patterns while
the residuals of models RH, M7 and PLAT look reasonably random. The APC model shows
a strong clustering of residuals due to its inability to allow for varying improvement rates
with age. The LC and CBD models, which do not incorporate a cohort effect, show very
marked diagonals patterns indicating the inability of these models to capture the well-known
cohort effect observed in the England and Wales population (Willets 2004). The issues with
the fit of the LC and CBD models become more evident when looking at scatter plots of the
residuals by age, period and cohort. Such plots for the LC model (Figure 5a) and the CBD
model (Figure 5b) can be produced using argument type = "scatter" of the function plot
via the commands:

R> plot(LCres, type = "scatter", reslim = c(-3.5, 3.5))
R> plot(CBDres, type = "scatter", reslim = c(-3.5, 3.5))

The right panels in Figure 5 clearly show that the LC and CBD models are unable to capture
the cohort effect. In addition, the left panel in Figure 5b reveals some strong patterns by age,
reflecting the lack of a quadratic age term in the CBD which may be necessary to capture
the commonly observed curvature of the mortality rates in a logit scale.

When evaluating the goodness-of-fit of different models, it is generally anticipated that models
with more parameters provide a better fit to the data. To rule out the possibility that the
better fit observed in a model is the result of over-parametrization and compare the relative
performance of several models, it has become common in the mortality literature to use
information criteria which modify the maximum likelihood criterion by penalizing models
with more parameters.12 Two of these criteria are the Akaike Information Criteria (AIC) and
the Bayesian Information Criteria (BIC), defined as AIC = 2ν −2L and BIC = ν log K −2L,

12For examples of such analysis see Cairns et al. (2009, Section 6.1.1), Haberman and Renshaw (2011, Section
3.3), and Lovász (2011, Section 4.1).
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Figure 4: Heat-maps of deviance residuals for different model fitted to the England and Wales
males population for ages 55-89 and the period 1961-2011.
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Figure 5: Scatter plots of deviance residuals for models LC and CBD fitted to the England
and Wales males population for ages 55-89 and the period 1961-2011.

respectively, with a lower value of AIC and BIC being preferable. In R these information
criteria can be computed using the generic functions AIC and BIC. For example, we can get
the AIC and BIC of the CBD model as follows:

R> AIC(CBDfit)

[1] 34697.82

R> BIC(CBDfit)

[1] 35256.83

Table 2 presents AIC and BIC values for the six models fitted to the England and Wales male
data. We note that both criteria lead to the same ranking of models with M7, PLAT, and
RH being the best performing models. Overall, these results are consistent with the existing
literature comparing single population models, where the Renshaw-Haberman extension of
the Lee-Carter model and the M7 model have been identified as good candidates for modeling
mortality in the England and Wales population (Cairns et al. 2009; Haberman and Renshaw
2011).
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LC CBD APC RH M7 PLAT
Number of parameters 119 102 162 197 229 211
AIC 29866(5) 34698(6) 24469(4) 21779(3) 21406(1) 21624(2)
BIC 30518(5) 35257(6) 25357(4) 22859(3) 22661(1) 22780(2)

Table 2: Number of parameters, AIC and BIC values (with their respective rankings in
brackets) for different model fitted to the England and Wales males population for ages 55-89
and the period 1961-2011.

7. Forecasting and simulation with stochastic mortality models
In the family of GAPC stochastic mortality models the dynamics of mortality are driven by
the period indexes κ

(i)
t , i = 1, . . . , N , and the cohort index γt−x. Therefore, the forecasting

and simulation of mortality rates requires the modeling of these indexes using time series
techniques.

For the period indexes we consider two alternative modelling approaches. A first possibility is
to use the standard approach in the actuarial literature (Cairns et al. 2006, 2011; Haberman
and Renshaw 2011; Lovász 2011) and assume that the period indexes follow a multivariate
random walk with drift. That is,

κt = δ + κt−1 + ξκ
t , κt =


κ

(1)
t
...

κ
(N)
t

 , ξκ
t ∼ N(0, Σ), (19)

where δ is an N -dimension vector of drift parameters and Σ is the N ×N variance-covariance
matrix of the multivariate white noise ξκ

t .

A second alternative is to assume that the individual period indexes, κ
(i)
t , i = 1, . . . , N , follow

a general univariate ARIMA model. Under this approach, the i-th period index, κ
(i)
t , is

assumed to follow an ARIMA(pi, qi, di) with drift, so that

∆diκ
(i)
t = δ

(i)
0 + ϕ

(i)
1 ∆diκ

(i)
t−1 + · · · + ϕ(i)

pi
∆diκ

(i)
t−pi

+ ξ
(i)
t + δ

(i)
1 ξ

(i)
t−1 + · · · + δ(i)

qi
ξ

(i)
t−qi

, (20)

where ∆ is the difference operator, δ
(i)
0 is the drift parameter, ϕ

(i)
1 , . . . , ϕ

(i)
pi are the autoregres-

sive coefficients with ϕpi ̸= 0, δ
(i)
1 , . . . , δ

(i)
qi are the moving average coefficients with δ

(i)
qi ̸= 0

and ξ
(i)
t is a Gaussian white noise process with variance σ

(i)
ξ .

As pointed out by Currie (2016), the main challenge when forecasting stochastic mortality
models is specifying the dynamics of the cohort effect. To have a simple starting point, we
follow previous studies (Renshaw and Haberman 2006; Cairns et al. 2011; Lovász 2011) and
assume that the cohort index, γt−x, follows a univariate ARIMA process which is independent
of the period index, κt. In general, we assume that γc ≡ γt−x follows an ARIMA(p, q, d) with
drift, so that

∆dγc = δ0 + ϕ1∆dγc−1 + · · · + ϕp∆dγc−p + ϵc + δ1ϵc−1 + · · · + δqϵc−q, (21)
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Mortality model Model for γt−x

APC ARIMA(1, 1, 0) with drift

RH ARIMA(1, 1, 0) with drift

M7 ARIMA(2, 0, 0) with non-zero intercept

PLAT ARIMA(2, 0, 0) with non-zero intercept

Table 3: ARIMA models for the cohort effect for models APC, RH, M7 and PLAT.

where ϵc is a Gaussian white noise process with variance σϵ.

The time series models in Equations 19, 20 and 21 can be used to obtain projected (sim-
ulated) values of the period index κ̇tn+s :=

(
κ̇

(1)
tn+s, . . . , κ̇

(N)
tn+s

)′
and cohort index γ̇tn+s−x1 ,

s = 1, . . . , h, to derive forecasted (simulated) values of the predictor

η̇x,tn+s = αx +
N∑

i=1
β(i)

x κ̇
(i)
tn+s + β(0)

x γ̇tn+s−x,

which can in turn be used to obtain forecasted (simulated) age-specific central mortality rates,
µ̇x,tn+s or age-specific one-year death probabilities, q̇x,tn+s.

In the package StMoMo the forecasting of GAPC stochastic mortality models is implemented
via the generic method forecast. This function estimates and forecasts the multivariate ran-
dom walk with drift in Equation 19 using the approach described in Haberman and Renshaw
(2011, Appendix B)13 and uses function Arima of package forecast (Hyndman and Khan-
dakar 2008; Hyndman 2017) to estimate and forecast the ARIMA processes of Equation 20
and Equation 21. For instance, if we assume that the period indexes follow a multivariate
random walk with drift (the default in StMoMo) and that the cohort indexes of the APC,
RH, M7, and PLAT model follow the ARIMA processes specified in Table 3, 50-year ahead
(h = 50) central projections of the period indexes, cohort index, and one-year death proba-
bilities for the England and Wales mortality experience can be obtain with the code:

R> LCfor <- forecast(LCfit, h = 50)
R> CBDfor <- forecast(CBDfit, h = 50)
R> APCfor <- forecast(APCfit, h = 50, gc.order = c(1, 1, 0))
R> RHfor <- forecast(RHfit, h = 50, gc.order = c(1, 1, 0))
R> M7for <- forecast(M7fit, h = 50, gc.order = c(2, 0, 0))
R> PLATfor <- forecast(PLATfit, h = 50, gc.order = c(2, 0, 0))

Alternatively, we could assume that the period indexes follow independent univariate ARIMA
models. This is achieved in function forecast by setting the argument method = "iarima".
For example, projections of the Lee-Carter model under the assumption that κ

(1)
t follows an

ARIMA(1,1,2) with drift are produced with the code:
13This is implemented in the function mrwd of the package StMoMo.
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R> LCforArima <- forecast(LCfit, h = 50, kt.method = "iarima",
+ kt.order = c(1, 1, 2))

By setting kt.order = NULL the function auto.arima from package forecast selects the best
ARIMA process for each period index.
The output from the function forecast is an object of the class "forStMoMo" including,
among other things, the following information:

• rates: a matrix with the central projection of the mortality rates, µ̇x,tn+s or q̇x,tn+s,
s = 1, . . . , h;

• kt.f: a list containing information on the multivariate random walk with drift fitted
to the period index κt; and

• gc.f: a list containing information on the ARIMA model fitted to the cohort index
γt−x.

There are print and plot methods for the "forStMoMo" class. For instance, plots of the
forecast of the period indexes of models LC, RH, M7 and PLAT (see Figures 6 and 7) can be
produced using the code:

R> plot(LCfor, only.kt = TRUE)
R> plot(LCforArima, only.kt = TRUE)
R> plot(RHfor, only.kt = TRUE)
R> plot(M7for, only.kt = TRUE, nCol = 3)
R> plot(PLATfor, only.kt = TRUE)

Similarly, plots of the forecast of the cohort indexes of the APC, RH, M7 and PLAT models
(see Figure 8) can be obtained with the commands:

R> plot(APCfor, only.gc = TRUE)
R> plot(RHfor, only.gc = TRUE)
R> plot(M7for, only.gc = TRUE)
R> plot(PLATfor, only.gc = TRUE)
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Figure 6: Forecast of the period indexes of the RH, M7 and PLAT models applied to the England and Wales males population for
ages 55-89 and the period 1961-2011. Dashed lines represent central forecast and dotted lines represent 95% prediction intervals.



26 StMoMo: An R Package for Stochastic Mortality Modeling

1960 1980 2000 2020 2040 2060

−
60

−
40

−
20

0

κt
(1)

 vs. t

year

(a) LC with random walk with drift

1960 1980 2000 2020 2040 2060

−
10

0
−

60
−

20
0

κt
(1)

 vs. t

year

(b) LC with ARIMA(1,1,2) with drift

Figure 7: Forecast of the period indexes of the LC model with random walk with drift and
ARIMA(1,1,2) with drift applied to the England and Wales males population for ages 55-89
and the period 1961-2011. Dashed lines represent central forecast and dotted lines represent
95% prediction intervals.

The package StMoMo also provides the function simulate for simulating trajectories from
GAPC stochastic mortality models. In order to simulate the period index, κt, in StMoMo
we implement a multivariate adaptation of Algorithm 2 in Haberman and Renshaw (2009)
without provision for parameter error,14 while to simulate the cohort index, γt−x,15 function
simulate uses the equivalent S3 method for objects of class "Arima" provided by the package
forecast. For example, the code below produces 500 simulated trajectories for the next 50
years of the six stochastic mortality models fitted previously to the England and Wales male
mortality experience:

R> set.seed(1234)
R> nsim <- 500
R> LCsim <- simulate(LCfit, nsim = nsim, h = 50)
R> CBDsim <- simulate(CBDfit, nsim = nsim, h = 50)
R> APCsim <- simulate(APCfit, nsim = nsim, h = 50, gc.order = c(1, 1, 0))
R> RHsim <- simulate(RHfit, nsim = nsim, h = 50, gc.order = c(1, 1, 0))
R> M7sim <- simulate(M7fit, nsim = nsim, h = 50, gc.order = c(2, 0, 0))
R> PLATsim <- simulate(PLATfit, nsim = nsim, h = 50, gc.order = c(2, 0, 0))

The output from the function simulate is an object of the class "simStMoMo" including,
among other things, the following information:

• rates: a three dimensional array with the future simulated mortality rates;

• kt.s: a list containing information on the simulated paths of the period index κt; and

• gc.s: a list containing information on the simulated paths of the cohort index γt−x.

14We note that Algorithm 2 in Haberman and Renshaw (2009) is itself an adaptation of the prediction
interval approach of Cairns et al. (2006).

15And the period index when Equation 20 is assumed.
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Figure 8: Forecast of the cohort indexes of the APC, RH, M7 and PLAT models applied to
the England and Wales males population for ages 55-89 and the period 1961-2011. Dashed
lines represent central forecast and dotted lines represent 95% prediction intervals.

This output can be used to extract sample trajectories from a model. For instance, Figure 9,
which depicts 20 trajectories of the period index, cohort index and one-year death probabilities
at age 65 from model RH, was produced with the code:

R> par(mfrow = c(1, 3))
R> plot(RHfit$years, RHfit$kt[1, ], xlim = range(RHfit$years,
+ RHsim$kt.s$years), ylim = range(RHfit$kt, RHsim$kt.s$sim[1, , 1:20]),
+ type = "l", xlab = "year", ylab = "kt", main = "Period index")
R> matlines(RHsim$kt.s$years, RHsim$kt.s$sim[1, , 1:20], type = "l", lty = 1)
R> plot(RHfit$cohorts, RHfit$gc, xlim = range(RHfit$cohorts,
+ RHsim$gc.s$cohorts), ylim = range(RHfit$gc, RHsim$gc.s$sim[, 1:20],
+ na.rm = TRUE), type = "l", xlab = "year", ylab = "kt",
+ main = "Cohort index (ARIMA(1,1,0) with drift)")
R> matlines(RHsim$gc.s$cohorts, RHsim$gc.s$sim[, 1:20], type = "l", lty = 1)
R> qxt <- Dxt / Ext
R> plot(RHfit$years, qxt["65", ], xlim = range(RHfit$years, RHsim$years),
+ ylim = range(qxt["65", ], RHsim$rates["65", , 1:20]), type = "l",



28 StMoMo: An R Package for Stochastic Mortality Modeling

1960 1980 2000 2020 2040 2060

−
50

−
30

−
10

0
10

Period index

year

kt

1880 1920 1960 2000

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

Cohort index (ARIMA(1,1,0) with drift)

year

kt
1960 1980 2000 2020 2040 2060

0.
00

5
0.

01
5

0.
02

5
0.

03
5

Mortality rates at age 65

year

ra
te

Figure 9: 20 simulated trajectories of the period index κ
(1)
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year death probabilities at age 65 qxt for model RH fitted to the England and Wales males
population for ages 55-89 and the period 1961-2011.

+ xlab = "year", ylab = "rate", main = "Mortality rates at age 65")
R> matlines(RHsim$years, RHsim$rates["65", , 1:20], type = "l", lty = 1)

We can also use the output from function simulate to produce fan charts depicting the
uncertainty associated with a model forecast. According to Cairns et al. (2011), such plots
are central to the analysis of the plausibility of the forecast from a model, and can be used
as a criterion when deciding upon what is the most appropriate model among a group of
possible stochastic mortality models. Figure 10 shows fan charts depicting 50%, 80% and
95% prediction intervals for mortality rates at ages 65, 75 and 85 for each of the six models
fitted to the England and Wales experience. Such fan charts can be produced using the
package fanplot (Abel 2015b,a). For instance, the fan chart for the Lee-Carter model shown
in Figure 10a was produced with the code:

R> library("fanplot")
R> probs = c(2.5, 10, 25, 50, 75, 90, 97.5)
R> qxt <- Dxt / Ext
R> matplot(LCfit$years, t(qxt[c("65", "75", "85"), ]),
+ xlim = c(1960, 2061), ylim = c(0.0025, 0.2), pch = 20, col = "black",
+ log = "y", xlab = "year", ylab = "mortality rate (log scale)")
R> fan(t(LCsim$rates["65", , ]), start = 2012, probs = probs, n.fan = 4,
+ fan.col = colorRampPalette(c("black", "white")), ln = NULL)
R> fan(t(LCsim$rates["75", , ]), start = 2012, probs = probs, n.fan = 4,
+ fan.col = colorRampPalette(c("red", "white")), ln = NULL)
R> fan(t(LCsim$rates["85", , ]), start = 2012, probs = probs, n.fan = 4,
+ fan.col = colorRampPalette(c("blue", "white")), ln = NULL)
R> text(1965, qxt[c("65", "75", "85"), "1990"],
+ labels = c("x = 65", "x = 75", "x = 85"))

From Figure 10 we note the following:

• Whilst for models CBD, RH, M7 and PLAT the fans at age 85 are wider than at age
65 in accordance with historical evidence (see Cairns et al. (2011, Appendix B)), for
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Figure 10: Fan charts for mortality rates qxt at ages x = 65 (bottom fan), x = 75 (middle fan)
and x = 85 (top fan) from the six models fitted to the England and Wales males population
for ages 55-89 and the period 1961-2011. The dots show historical mortality rates for 1961-
2011. Shades in the fan represent prediction intervals at the 50%, 80% and 95% level.

models LC and APC the fans at age 85 are narrower than at age 65. This suggests that
forecasts from models LC and APC are not plausible for the dataset used in this paper.

• Forecasts for the PLAT model show an implausible increase of mortality rates. This
is because the central trend is linked to the estimated cohort effect γt−x for the PLAT
model (see Figure 8d) which shows a steep upward trend between 1935 and 1955.

• The central trend and uncertainty levels produced by the each of the models have
noticeably differences. This highlights the importance of recognizing model risk as a
significant issue when modeling mortality (Cairns et al. 2011).

Finally, with the aid of StMoMo’s utility function extractCohort, one can use the output
of forecast and simulate to extract the projected death probabilities for specific cohorts.
For example, a plot of the mortality rates projected by the Lee-Carter method for the 1950
cohort (see Figure 11) can be produced as follow:
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Figure 11: Mortality rates for the 1950 generation obtained with the Lee-Carter model. The
solid line corresponds to fitted values while the dash line corresponds to projected values.

R> plot(55:61, extractCohort(fitted(LCfit, type = "rates"), cohort = 1950),
+ type = "l", log = "y", xlab = "age", ylab = "q(x)",
+ main = "Mortality rates for the 1950 cohort",
+ xlim = c(55,89), ylim = c(0.005, 0.12))
R> lines(62:89, extractCohort(LCfor$rates, cohort = 1950), lty = 2)

These cohort mortality rates can then be employed to build a life table to perform demographic
or actuarial calculations using, for instance, the lifecontingencies package (Spedicato 2013).

8. Parameter uncertainty and bootstrapping
When analyzing the uncertainty in mortality projections in an actuarial context it is impor-
tant to consider all sources of risk. However, the prediction intervals (fan charts) obtained in
the previous section only account for the uncertainty arising from the error in the forecast of
the period and cohort indexes and ignore the uncertainty arising from the estimation of the
parameters of the GAPC model.

Due to the analytical intractability of many stochastic mortality models, parameter uncer-
tainty is typically accounted for using the bootstrap procedure. This procedure yields B

samples αb
x, β

(1),b
x , . . . , β

(N),b
x , κ

(1),b
t , . . . , κ

(N),b
t , β

(0),b
x , γb

t−x, b = 1, . . . , B, of the parameters of
the GAPC model which can then be used to produce confidence and prediction intervals of de-
mographic and actuarial quantities. To sample the parameters of GAPC models we consider
the semiparametric bootstrap proposed by Brouhns et al. (2005) and the residual bootstrap
first considered in Koissi et al. (2006):

• Semiparametric bootstrap. Brouhns et al. (2005) propose a semiparametric boot-
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strap where first B samples of the number of deaths db
xt, b = 1, . . . , B, are generated by

sampling from the Poisson Distribution with mean dxt. Each bootstrapped sample db
xt,

b = 1, . . . , B, is then used to re-estimate the model to obtain B bootstrapped parameter
estimates αb

x, β
(1),b
x , . . . , β

(N),b
x , κ

(1),b
t , . . . , κ

(N),b
t , β

(0),b
x , γb

t−x, b = 1, . . . , B. Renshaw and
Haberman (2008) use the fitted number of death d̂xt (instead of the observed deaths dxt)
to perform the sampling from the Poisson distribution. Wang and Lu (2005) consider
a similar semiparametric approach using a Binomial distribution of deaths.

• Residual bootstrap. Another possibility is to bootstrap the residuals of the model
as suggested by Koissi et al. (2006). Under this approach the deviance residuals rxt

are resampled with replacement to generate B replications rb
xt, b = 1, . . . , B, which are

mapped to the corresponding resampled death counts db
xt, b = 1, . . . , B, using the inverse

formula. The model is then re-fitted using these resampled number of deaths to produce
B sets of estimated parameters αb

x, β
(1),b
x , . . . , β

(N),b
x , κ

(1),b
t , . . . , κ

(N),b
t , β

(0),b
x , γb

t−x, b =
1, . . . , B. We refer to Koissi et al. (2006) and Renshaw and Haberman (2008) for details
on the inverse formula under a Poisson distribution of deaths and to Debón et al.
(2010) for the inverse formula under a Binomial framework. Finally, we note that in
implementing the residual bootstrap we follow Renshaw and Haberman (2008) and
apply the inverse formula to produce samples of the observed number of deaths rather
than samples of the fitted number of deaths as originally done by Koissi et al. (2006).

In what follows we illustrate the assessment of the parameter uncertainty using the package
StMoMo. In doing so we deviate from the England and Wales example we have used so far
and use instead New Zealand mortality data for males. This new example follows closely
the work of Li (2014) who uses New Zealand mortality data to compare several simulation
strategies for assessing the risk in mortality projections with a Poisson Lee-Carter model.
The main rationale for the change of dataset is that parameter uncertainty is particularly
important when analyzing the mortality of smaller populations such as smaller countries or
pension plans.16 This new example also serves as a means for illustrating the use of the
StMoMo package with other datasets.

Mortality data for New Zealand can be extracted from the Human Mortality Database (2014)
using function hmd.mx of the demography package with the code:

R> library("demography")
R> NZdata <- hmd.mx(country = "NZL_NP", username = username,
+ password = password, label = "New Zealand")

We note that the username and password above are for the Human Mortality Database and
should be replaced appropriately. We can then transform the Human Mortality Database
data for Kiwi males into StMoMo’s format using function StMoMoData:

R> NZStMoMo <- StMoMoData(NZdata, series = "male")

16While the population of England and Wales in 2008 was 54.8 million, the population of New Zealand in
2008 was 4.3 million.
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Following Li (2014), we fit a Poisson Lee-Carter model to New Zealand male data for ages 0
to 89 and for the period 1985 to 2008. This can be carried out with the commands:17

R> LCfit_NZ <- fit(lc(), data = NZStMoMo, ages.fit = 0:89,
+ years.fit = 1985:2008)

In the StMoMo package the bootstrap of GAPC stochastic mortality models is implemented
with the generic function bootstrap. This functions supports both the semiparametric boot-
strap and the residual bootstrap. For instance, 5000 semiparametric bootstrap samples of
the Lee-Carter model can be obtained with the code:

R> LCboot_NZ <- bootstrap(LCfit_NZ, nBoot = 5000, type = "semiparametric")

We note that the bootstrap is a computationally intensive procedure. In particular, the 5000
semiparametric bootstrap samples of the Lee-Carter model took about two hours to run.18

The output from function bootstrap is an object of the class "bootStMoMo" in which the
component bootParameters contains the nBoot replications of the bootstrap parameters. A
fan chart depicting the 50%, 80% and 95% confidence intervals of the bootstrapped Lee-Carter
model (Figure 12) can be obtained with the command:

R> plot(LCboot_NZ, nCol = 3)

From Figure 12 we note that whilst the parameter uncertainty in the static age function αx

and the period index κ
(1)
t is modest, the uncertainty in the age-modulating parameters β

(1)
x

is more significant.

Once a stochastic mortality model has been bootstrapped we can simulate it forward to
obtain simulated trajectories which account for both the forecast error in the period and
cohort indexes and the error in the model fitting. In StMoMo we can accomplish this using
the function simulate applied to an object of class "bootStMoMo". Thus, to obtain 5000
simulated trajectories of the Lee-Carter model for the next 24 years taking into account
parameter uncertainty we use the instruction:

R> LCsimPU_NZ <- simulate(LCboot_NZ, h = 24)

To highlight the impact of parameter risk on mortality rate projections it is instructive to
compare prediction intervals with and without the allowance of parameter uncertainty. 24-
year ahead central forecast together with 5000 trajectories of the Lee-Carter model allowing
only for forecast error in the random walk with drift and ignoring the model fitting error can
be obtained with the code:

17We note that fitting a Poisson Lee-Carter model can also be done using function lca in demography by
setting argument adjust="dxt". Similarly, we can a fit a Poisson Lee-Carter model using function lca.rh in
package ilc.

18In running this code, we used a computer with an Intel Core i5-3320m processor running at 2.60 GHz
under Windows 7 Home Premium Edition (64 bits) with 8 GB of RAM.



Andrés M. Villegas, Vladimir K. Kaishev, Pietro Millossovich 33

0 20 40 60 80

−
8

−
6

−
4

−
2

αx vs. x

age

0 20 40 60 80

−
0.

01
0.

01
0.

03

βx
(1) vs. x

age

1985 1990 1995 2000 2005

−
30

−
10

0
10

20
30

κt
(1) vs. t

year

Figure 12: Bootstrapped parameters for the Poisson Lee-Carter model fitted to the New
Zealand male population for ages 0-89 and the period 1985-2008. Shades in the fan represent
confidence intervals at the 50%, 80% and 95% level.

R> LCfor_NZ <- forecast(LCfit_NZ, h = 24)
R> LCsim_NZ <- simulate(LCfit_NZ, nsim = 5000, h = 24)

Figure 13 depicts 95% prediction intervals for mortality rates at age 40, 60 and 80 with and
without allowance for parameter uncertainty. This graph was produced with the code:

R> mxt <- LCfit_NZ$Dxt / LCfit_NZ$Ext
R> mxtHat <- fitted(LCfit_NZ, type = "rates")
R> mxtCentral <- LCfor_NZ$rates
R> mxtPred2.5 <- apply(LCsim_NZ$rates, c(1, 2), quantile, probs = 0.025)
R> mxtPred97.5 <- apply(LCsim_NZ$rates, c(1, 2), quantile, probs = 0.975)
R> mxtHatPU2.5 <- apply(LCsimPU_NZ$fitted, c(1, 2), quantile, probs = 0.025)
R> mxtHatPU97.5 <- apply(LCsimPU_NZ$fitted, c(1, 2), quantile, probs = 0.975)
R> mxtPredPU2.5 <- apply(LCsimPU_NZ$rates, c(1, 2), quantile, probs = 0.025)
R> mxtPredPU97.5 <- apply(LCsimPU_NZ$rates, c(1, 2), quantile, probs = 0.975)
R> x <- c("40", "60", "80")
R> matplot(LCfit_NZ$years, t(mxt[x, ]), xlim = range(LCfit_NZ$years,
+ LCfor_NZ$years), ylim = range(mxtHatPU97.5[x, ], mxtPredPU2.5[x, ],
+ mxt[x, ]), type = "p", xlab = "years",
+ ylab = "mortality rates (log scale)", log = "y", pch = 20,
+ col = "black")
R> matlines(LCfit_NZ$years, t(mxtHat[x, ]), lty = 1, col = "black")
R> matlines(LCfit_NZ$years, t(mxtHatPU2.5[x, ]), lty = 5, col = "red")
R> matlines(LCfit_NZ$years, t(mxtHatPU97.5[x, ]), lty = 5, col = "red")
R> matlines(LCfor_NZ$years, t(mxtCentral[x, ]), lty = 4, col = "black")
R> matlines(LCsim_NZ$years, t(mxtPred2.5[x, ]), lty = 3, col = "black")
R> matlines(LCsim_NZ$years, t(mxtPred97.5[x, ]), lty = 3, col = "black")
R> matlines(LCsimPU_NZ$years, t(mxtPredPU2.5[x, ]), lty = 5, col = "red")
R> matlines(LCsimPU_NZ$years, t(mxtPredPU97.5[x, ]), lty = 5, col = "red")
R> text(1986, mxtHatPU2.5[x, "1995"], labels = c("x=40", "x=60", "x=80"))
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Figure 13: 95% Prediction intervals for mortality rates qxt at ages x = 40 (bottom lines),
x = 60 (middle lines) and x = 80 (top lines) for the Poisson Lee-Carter model fitted to the
New Zealand male population for ages 0-89 and the period 1985-2008. Dots show historical
mortality rates for 1985-2008 and solid black lines show the corresponding fitted rates. Dashed
lines represent central forecast, black dotted lines represent 95% prediction intervals excluding
parameter uncertainty and dot-dashed red lines depict 95% confidence and prediction intervals
including parameter uncertainty.

In Figure 13 we can clearly see that parameter uncertainty has an important impact on the
prediction intervals. This is particularly noticeable at age 40 where in year 2030, for instance,
the width of the prediction interval with parameter uncertainty is around 3 times bigger than
that without parameter uncertainty. These results are in line with those obtained by Li (2014)
using the same dataset.19

9. Conclusion
In this paper we have introduced the family of generalized age-period-cohort stochastic mor-
tality models by paralleling the standard framework of generalized linear models. In addition,
we have presented the R package StMoMo which takes advantage of the unifying framework of
the GAPC family to provide tools for fitting a diverse number of stochastic mortality models,
assessing their goodness of fit and also performing mortality projections. A key feature of the
GAPC family and of StMoMo is that they not only encompass models from the Lee-Carter
and CBD families, but can also accommodate possible new models. Furthermore, model risk
is a prevalent issue when forecasting mortality and we therefore believe that the possibility
of easily implementing and comparing a wide range of models makes StMoMo a valuable
addition to the toolkit for measuring and managing longevity risk.

19We note that our prediction intervals without and with parameter uncertainty correspond to methods (I)
and (IVa) in Li (2014), respectively.



Andrés M. Villegas, Vladimir K. Kaishev, Pietro Millossovich 35

Our package can be expanded in several directions. The current version of StMoMo only
allows the use of a log link with a Poisson distribution of deaths or a logit link with a Bino-
mial distribution of deaths. However, we plan to expand the possible combinations of error
distribution and link function to include, for instance, Binomial errors with a complementary
log-log link as suggested by Currie (2016).

In the GAPC family it is assumed that the age-modulating terms β
(i)
x , i = 0, . . . , N , are

either non-parametric functions of age which need to be estimated or parametric functions
of age with a pre-specified functional form f (i)(x). This latter case could be extended to
include the more general case of a pre-specified functional form with a set of parameters that
need to be estimated, that is, β

(i)
x = f (i)(x; θi) with θi being some model parameters. This

generalization would allow the implementation of the family of models considered in Hunt
and Blake (2014) and the inclusion of models where age terms are given by smooth para-
metric functions such as polynomial splines. Smoothness of the parameters in a stochastic
mortality model is a topic that has received attention in the literature and offers a potential
route for further extensions of StMoMo, see for instance Delwarde et al. (2007); Currie (2013).

Finally, the increasing attention that multiple population mortality models are receiving in the
mortality forecasting literature provides an avenue for a wealth of extensions of our package.
In particular, we are considering the development of a two-population version of StMoMo that
implements the class of relative two-population models considered in Villegas et al. (2015).
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